Fine tuning interface relaxation methods for elliptic differential equations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interface Relaxation Methods for Elliptic Differential Equations

A population of eight non-overlapping domain decomposition methods for solving elliptic differential equations are viewed and formulated as iterated interface relaxation procedures. A comprehensive review of the underlying mathematical ideas and the computational characteristics is given. The existing theoretical results are also reviewed and high level descriptions of the various algorithms ar...

متن کامل

Interface Relaxation Methods for Elliptic Diierential Equations 1

A population of eight non-overlapping domain decomposition methods for solving Elliptic Diierential Equations viewed and formulated as iterated interface relaxation procedures is considered. A comprehensive review of the underlying mathematical ideas and the computational characteristics is given. The existing theoretical results are also reviewed and high level descriptions of the various algo...

متن کامل

Waveform relaxation methods for implicit differential equations

We apply a Runge-Kutta-based waveform relaxation method to initial-value problems for implicit differential equations. In the implementation of such methods, a sequence of nonlinear systems has to be solved iteratively in each step of the integration process. The size of these systems increases linearly with the number of stages of the underlying Runge-Kutta method, resulting in high linear alg...

متن کامل

Waveform Relaxation Methods for Stochastic Differential Equations

The solution of complex and large scale systems plays a crucial role in recent scientific computations. In particular, large scale stochastic dynamical systems represent very complex systems incorporating the random appearances of physical processes in nature. The development of efficient numerical methods to study such large scale systems, which can be characterized as weakly coupled subsystem...

متن کامل

Finite element methods for semilinear elliptic stochastic partial differential equations

We study finite element methods for semilinear stochastic partial differential equations. Error estimates are established. Numerical examples are also presented to examine our theoretical results. Mathematics Subject Classification (2000) 65N30 · 65N15 · 65C30 · 60H15

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Numerical Mathematics

سال: 2002

ISSN: 0168-9274

DOI: 10.1016/s0168-9274(01)00176-3